
1.

2.

3.

4.

5.

1.

2.

[EN] 04. Adjusting the Look of the Reader Application

Adjusting the Look of the Reader Application
Adding and Modifying Content in a Component
Adding a New Component to a Subpage
Removing a Component from a Subpage
Setting a Component in a Layout
Modifying and Adding Language Messages
Changing the Existing Images (Logo)
Modifying CSS

Adding and Modifying Content in a Component

Most data displayed by the reader application is downloaded from the dLibra system server. Some examples of such data are collections, digital objects, or
attribute values. However, the user’s own, non-standard content can be added, and the manner in which the existing content is displayed can be changed in
any place of the displayed HTML code.

Example: We want to place an image – which presents the employees of the institution – on the “Contact” page.

We open the “Contact” page and verify the name of the page in the address bar – for example, for the https://example.com/dlibra/contact?
 address, the page name in the reader application will be “ ”.Ianguage=pl contact

We open the file and find the <page name=" " layout=" " secure="true" inherits=" "> line. In that /WEB-INF/pages.xml contact home_layout base-page
section, there are all the available components for the “contact” page. We are interested in the only component. Apart from its ContactComponent
components, the section uses components from the section (but we do not want to modify it in any way). The section for the contact base-page
home page – for example, – is here called “ ” (we do not want to modify it, either). For making other changes, it https://example.com/dlibra/ main
may be useful to know that the “contact” page is embedded in the template. We can introduce changes in that template as well. We home_layout
will find it in the /WEB-INF/layout/templates directory. Before a modification, a backup of the directory should be made.
We unpack the archive. Having done that, we copy the file to the /WEB-INF/lib/dcore-webapp-components-6.0.0.jar ContactComponent.vm /WEB

 directory.-INF/components/templates
From that time on, we can make any changes in the file. The changes will have an impact on the content displayed on the ContactComponent.vm
“Contact” page. When the has been removed from the directory, our changes will ContactComponent.vm /WEB-INF/components/templates
disappear, and the default manner of displaying content will be restored.
In the file, we search for a place in which we would like to add the image and add the appropriate HTML /WEB-INF/components/templates
fragment, for example: example.com/pracownicy.png"/

Adding a New Component to a Subpage

If we decide that we want to add our own data, static or downloaded with the use of a remote API, we can create our own component.

Example: We want to display weather data on the home page, for English-speaking guests.

In the , we create a file, with the following content./WEB-INF/components/templates WeatherComponent.vm

WeatherComponent.vm

<div #if($userLanguage != "en") style="display:none" #end id="WeatherComponent"></div>

We create the , directory containing the js file with the following content (the script downloads the /style/dlibra/custom/js WeatherComponent.js
weather data from an external Yahoo server and displays them on our page, in the selected place).

https://example.com/dlibra/contact
https://example.com/dlibra/contact
https://example.com/dlibra/

2.

3.

4.

WeatherComponent.js

var dlibra = dlibra || {};
dlibra.WeatherComponent = {
 init: function () {
 $.get("https://query.yahooapis.com/v1/public/yql?q=select%20*%20from%20weather.forecast%
20where%20woeid%20in%20(select%20woeid%20from%20geo.places(1)%20where%20text%3D%22poznan%2C%20pl%22)
&format=json&env=store%3A%2F%2Fdatatables.org%2Falltableswithkeys", function(data) {
 var description = data.query.results.channel.item.description.replace("<![CDATA[", "").
replace("]]>", "");
 $('#WeatherComponent').html(description)
 });
 }
}
$(function () {
 dlibra.WeatherComponent.init();
})

We edit the file and, just before closing the “body” tag, add our script./WEB-INF/layout/templates/home_layout.vm

home_layout.vm

 <script src="${homepageUrl}/style/dlibra/custom/js/WeatherComponent.js" type="text/javascript"><
/script>
</body>

We add the component to the home page. For that purpose, we look for the “main” section which corresponds to the home WeatherComponent
page, in the file. We add another component inside components./WEB-INF/pages.xml

4.

5.

pages.xml

<page name="main" layout="home_layout" inherits="base-page">
 <actions>
 <action name="ChangeLanguageAction"/>
 <action name="LogoutAction"/>
 </actions>
 <components>
 <component name="pl.psnc.dlibra.web.comp.pages.components.
LatestEditionsComponent">
 <place>topSplit</place>
 <position>1</position>
 </component>
 <component name="pl.psnc.dlibra.web.comp.pages.components.NewsComponent">
 <place>topSplit</place>
 <position>2</position>
 </component>
 <component name="pl.psnc.dlibra.web.comp.pages.components.WeatherComponent">
 <place>main</place>
 <position>1</position>
 </component>
 <component name="pl.psnc.dlibra.web.comp.pages.components.
CollectionsPresentationComponent">
 <place>main</place>
 <position>2</position>
 </component>
 <component name="pl.psnc.dlibra.web.comp.pages.components.
PopularEditionsComponent">
 <place>main</place>
 <position>3</position>
 </component>
 <component name="pl.psnc.dlibra.web.comp.pages.components.RecommendedComponent">
 <place>main</place>
 <position>4</position>
 </component>
 </components>
</page>

We ought to remember to assign a higher position to the remaining components the place of which is also “ ”, so that every component has a main
different .position

The system will display the weather information for English-speaking guests on our site.

Przykładowy komponent pogody

5.

1.

Removing a Component from a Subpage

For various reasons, a digital library administrator may decide to remove some components. There are two methods of removing a component:

by commenting it out in file (this is a safer method because it allows the administrator to restore the component) or/WEB-INF/pages.xml
by removing the component from file /WEB-INF/pages.xml

Example: We decide to hide the component with the most popular objects displayed on the home page.

We open the file and look for the section which contains the components displayed on the home page. We comment /WEB-INF/pages.xml main
the component with the <!— <component>...</component> —> comment, as shown in the file below.PopularEditionsComponent

pages.xml

 <page name="main" layout="home_layout" inherits="base-page">
 <actions>
 <action name="ChangeLanguageAction"/>
 <action name="LogoutAction"/>
 </actions>
 <components>
 <component name="pl.psnc.dlibra.web.comp.pages.components.
LatestEditionsComponent">
 <place>topSplit</place>
 <position>1</position>
 </component>
 <component name="pl.psnc.dlibra.web.comp.pages.components.NewsComponent">
 <place>topSplit</place>
 <position>2</position>
 </component>
 <component name="pl.psnc.dlibra.web.comp.pages.components.
CollectionsPresentationComponent">
 <place>main</place>
 <position>1</position>
 </component>
 <!--<component name="pl.psnc.dlibra.web.comp.pages.components.
PopularEditionsComponent">
 <place>main</place>
 <position>3</position>
 </component>-->
 <component name="pl.psnc.dlibra.web.comp.pages.components.RecommendedComponent">
 <place>main</place>
 <position>4</position>
 </component>
 </components>
 </page>

1.
2.
3.
4.

5.

1.

2.

3.

Setting a Component in a Layout

Every component has its place in the page layout. The information about which place exactly the component is located in can be checked in the pages.xml
file. In that file, we can also indicate a different place for a file.

Example: We decide to move the news component to a completely different place on the home page.

We open the file.pages.xml
We look for the , section, which contains the components from the home page.main
We read the name of the , from the layout field. The default layout name for a page is .layout home_layout
In the section, we look for the component with updates, , to which we want to main pl.psnc.dlibra.web.comp.pages.components.NewsComponent
assign a new location in the layout. We read the place for that component from the place field. By default, the value is . We home_layout topSplit
check the order in the ; by default, the value is . The first component displayed in the topSplit place is the component with recently position 2
added objects.
We modify the value of place in the data of component . We change value field pl.psnc.dlibra.web.comp.pages.components.NewsComponent place
to , and value – to .Każdy komponent ma swoje ściśle określone miejsce w layoucie strony. Informację o tym, w którym myPlace position 1
konkretnie miejscu layoutu znajduje się dany komponent możemy sprawdzić w pliku . Tam możemy również wskazać inne miejsce pages.xml
wyświetlania się komponentu.

pages.xml

<component name="pl.psnc.dlibra.web.comp.pages.components.NewsComponent">
 <place>myPlace</place>
 <position>1</position>
</component>

6. We open file and place the following code anywhere in that file./WEB-INF//layout/templates/home_layout.vm

home_layout.vm

#foreach($comp in $myPlace)
 $!{comp.RenderedTemplate}
#end

As a result, all components the fields of which have value will be displayed, including our component with updatesplace myPlace

Modifying and Adding Language Messages

Every message in the reader application is displayed in multilingual form. It means the language of a displayed message will differ depending on the selected
website language.

Example: We want to the footer to include the “All rights reserved” clause.

We look for the file with the information which is displayed at the very bottom of a page. By analyzing file /WEB-INF/layout/templates
, we will learn that the footer content is determined by the file./home_layout.vm /WEB-INF/layout/templates/parts/footer.vm

We add a new entry in the file./WEB-INF/layout/templates/parts/footer.vm

footer.vm

$res.get('Home.Copyright.clause')

The reference will display the clause in various languages. They must be defined.$res.get('Home.Copyright.clause')

We open the file and add a translation for Polish./WEB-INF/layout/resources/layout_pl.xml

3.

4.

5.

1.

1.

1.

2.

layout_pl.xml

<entry key="Home.Copyright.clause">Wszelkie prawa zastrzeone</entry>

We open the file and add a translation for English. /WEB-INF/layout/resources/layout_en.xml

layout_en.xml

<entry key="Home.Copyright.clause">All rights reserved</entry>

We save the messages we would like to display in components in files . Next, in /WEB-INF/components/resources/WEBAPP_{język}.xml
component files (for example,), we refer to translations in the following way:MyComponent.vm

MyComponent.vm

$res.get('MyComponent.MyInfo')

Changing the Existing Images (Logo)

Apart from dynamic images (for example, digital object thumbnails), the reader application displays static images (for example, logo). The second group of
images can be changed to user’s own. It is recommended that the new images be the same size as the replaced images. If the sizes of a new image is
different, the display of that image should be tested in various views and browsers, for a desktop computer, a tablet, and a mobile phone.

Example: We change the default dLibra logo to our own.

We open the file and add an entry with the path to the new logo: /WEB-INF/layout/custom_templates/custom_layout_library.vm

#macro(logoPath)
 ${homepageUrl}/style/dlibra/${styleVariant}/my/logo/path/logo.svg
#end

Example: We change the default dLibra logo to our own, taking into account the language version of the logo.

We open the file and add an entry with the path to the new logo. Using the /WEB-INF/layout/custom_templates/custom_layout_library.vm
${userLanguage} variable, we takes into account the logos in various languages:

#macro(logoPath)
 #if (${userLanguage} == "en")
 ${homepageUrl}/style/dlibra/${styleVariant}/my/logo/path/logo_en.svg
 #elseif (${userLanguage} == "de")
 ${homepageUrl}/style/dlibra/${styleVariant}/my/logo/path/logo_de.svg
 #else
 ${homepageUrl}/style/dlibra/${styleVariant}/my/logo/path/logo_pl.svg
 #end
#end

Example: We change an image to our own.

In order to change an image, we just have to find the path of the old image and paste the new one there. The best way to check the path of an
image is to use the browser.Google Chrome
We open the page we are interested in in the digital library. We right-click the image and choose the examine option from the context menu. There
will appear a window with the element selected in the HTML code. The element will be . We check the src value of the element to read the img
path to the file on our server. For example, value src=" " points to directoryhttp://demo.dl.psnc.pl/dlibra/default/img/pictures/my-picture.svg
/webapp/style/dlibra/default/img/pictures/my-picture.svg.

Modifying CSS

The styles used by the reader application are in the directory. They can be overwritten, and new styles can be added. The most /styles/dlibra/default/css/
appropriate place for it is file ./styles/dlibra/default/css/custom.css

	[EN] 04. Adjusting the Look of the Reader Application

