
[EN] 03. Sample and Test Extensions
This chapter is about extensions which have been created to test the extension mechanisms in the Editor and Administrator Application and can be used, by
programmers interested in that topic, as examples of the implementation of plugins.

Building Extensions

Construction of sample extensions from their source files is only possible if the tool is installed in the system.Maven 1.1

The archive with the source code has to be unpacked. The directory will contain project directories for particular dcore-app-extension-tests

extensions, with names beginning with . The directory will also contain the directory with additional jar files dcore-app-extension-tests maven-repo

needed for building.

In order to build the selected extension, the user should enter the directory related to it in the console and run the

maven clean install

One can also build all extensions at once. To do that, the user should run the command in the maven multiproject:clean multiproject:install

 directory.dcore-app-extension-tests

Programmers working in the Eclipse environment may find the following command, which creates a ready-to-import Eclipse file in the plugin directory,
useful:

maven eclipse

Once the chosen extension has been built, a file is placed in the directory; the file can be installed in the dLibra system.jar target

Installing Sample Extensions

Sample extensions are not installed in the Editor and Administrator Application by default. In order to install such a plugin in the system, the user should
copy the file of the plugin in the /WEB-INF/jnlp-jars directory of the reader application and run the Editor and Administrator Application update jar

process in the administration panel. For more information about the administration panel, see .here

Once the Editor Application has been restarted, the plugins should be visible (which can be checked in the “About the program” item of the “Help” menu).
The update process in the administration panel must be run after every change of files.jar

Configuring Sample Extensions

A sample extension will be displayed correctly in the Editor and Administrator Application if the contains an appropriate src/etc/plugin.xml

configuration. The construction of that file results from the requirements of the . The content of that file can look as follows:Java Plugin Framework

Source Code

The source code of sample extensions can be downloaded here: dcore-app-extension-tests.zip

http://maven.apache.org/maven-1.x/start/download.html
https://confluence.man.poznan.pl/community/display/DLI/06.++Panel+administracyjny
http://jpf.sourceforge.net/
https://docs.psnc.pl/download/attachments/8195161/dcore-app-extension-tests.zip?version=1&modificationDate=1538657886160&api=v2

plugin.xml

<?xml version="1.0" ?>
<!DOCTYPE plugin PUBLIC "-//JPF//Java Plug-in Manifest 0.7" "http://jpf.sourceforge.net/plugin_0_7.dtd">
<plugin id="pl.psnc.dlibra.app.extension.op.test" version="${pom.currentVersion}">
<requires>
 <import plugin-id="pl.psnc.dlibra.app.extension"/>
</requires>
 <runtime>
#foreach($dep in ${pom.dependencies})
#if(${dep.type} == "jar" && !${dep.getProperty('dist.skip').equals("true")})
 <library id="${dep.artifact}" path="lib/${dep.artifact}" type="code" />
#end
#end
 <library id="pluginCode" path="${jarName}" type="code" />
 </runtime>
<extension plugin-id="pl.psnc.dlibra.app.extension"
 point-id="objectPanel" id="op-test">
 <doc>
 <doc-text>Polish interface language is provided by Poznan Supercomputing and Networking Center.<
/doc-text>
 </doc>
 <parameter id="class"
 value="pl.psnc.dlibra.app.extension.optest.DummyObjectPanel"/>
</extension>
</plugin>

The <runtimes> tag contains the macro which automatically adds all the necessary jar files (those which are listed as dependencies in the Velocity project.

 file and which do not have value added) to the distribution.xml <dist.skip>true</dist.skip>

The tag defines the given extension. The attribute must have value " ". The point-<extension> pluginId pl.psnc.dlibra.app.extension

id attribute must contain the identifier of the extension point to which the plugin is to be connected (corresponding to the names mentioned in the
), and the id attribute must be the unique identifier of the extension. The tag may be expanded by the addition of an optional documentation <extension>

doc tag with the text to be displayed in the information window of the application (in the “About the program” item of the “Help” menu) and by adding <par
 tags which define the parameters mentioned in the description of the extension point.ameters>

Note: Each sample extension only uses one extension point, but such a plugin can be connected to many points, by placing more tags in the <extension>

configuration file.

The List of Sample Extensions

The extensions are listed and described in subchapters:

[EN] 01. The Sample Tool-Type Extension
[EN] 02. The Sample eventListener-Type Extension
[EN] 03. The Sample objectPanel-Type Extension
[EN] 04. The Sample dataSource-Type Extension

maven multiproject:clean multiproject:install

http://velocity.apache.org/
https://docs.psnc.pl/display/DLI6EN/%5BEN%5D+02.+The+Extensions+of+the+Editor+and+Administrator+Application
https://docs.psnc.pl/display/DLI6EN/%5BEN%5D+02.+The+Extensions+of+the+Editor+and+Administrator+Application
https://docs.psnc.pl/display/DLI6EN/%5BEN%5D+01.+The+Sample+Tool-Type+Extension
https://docs.psnc.pl/display/DLI6EN/%5BEN%5D+02.+The+Sample+eventListener-Type+Extension
https://docs.psnc.pl/display/DLI6EN/%5BEN%5D+03.+The+Sample+objectPanel-Type+Extension
https://docs.psnc.pl/display/DLI6EN/%5BEN%5D+04.+The+Sample+dataSource-Type+Extension

	[EN] 03. Sample and Test Extensions

