

Adapting codes to IMAS IMAS integration from WP Code Development activities in 2020-2021

Pär Strand, and the WPCD team

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

CHALMERS

Outline

Pre-amble (setting the stage) Integration levels – additional requirements Immersing in the IMAS data ecology

- MHD reconstruction and stability
- EDGE turbulence example
- ETS
- AMNS or how to store largish common data
- Simple Fortran examples of actor integration

My apologies to the large number of contrubutions to WP CD that I am glancing over or just not mentioning...

Pre-amble

The e-Tasc activities are expected to accelerate the scientific output, enhance the software engineering quality and promote a data centric research activity (open and FAIR) \rightarrow

- Higher level of software engineering
- Code (Products) available to EUROFusion users
- Running on EUROfusion platforms
- Integrated in the IMAS ecology
- With an easy to use GUI on top

Requirements towards open data and increased sharing within the EUROfusion community may (will) add additional concerns:

- Provencance capture
- Documentation of
 - Software
 - Data collections

I believe that the IMASification is not the most challenging part for the TSVVs in this! However, it is a key component in achieving the etasc goals (cmp Frederics talk) ACH Training 2021-09-20

Within E-TASC, we distinguish between two types of software. On the one hand, we have "reservic software" which is typically developed within "Styru Tasks or in the broader community. It tends to aim at addressing specific scientific questions and has a very limited user base (often more or less identical with the development team). The majority of our software in flucton research day fails in this category, and while it will continue to play an important role in the future, it is clear that several significant challenges ahead – this supporting or even guiding ITER operation and DEMO design – call for a more professional approach. Consequently, E-TASC will provide the platform and support to develop so-called *CUBO*(usion standard software, taking the development, dissemination, and exploitation of fusion software to a net level.

EUROfusion standard software will be developed with a very rigorous, consistent quality assurance process that is common across the E-TASC initiative; it is designed to benefit a wide range of users across EUROfusion, well beyond the team of code developers, and will adhere to the following guidelines and criteria:

- Free availability (within EUROfusion) of an up-to-date release version of the source code used for production runs
- Good software engineering practices (version control, regression/unit testing, shared development rules etc.)
- High-quality code documentation via user manuals and reference publications (including, i particular, a detailed description of the underlying model)
- Excellent support of users, co-developers, and support staff within EUROfusion (via contact person, mailing list, issue tracker, and the like)
- Specific plans for code verification and validation (involving a third party), in particular within EUROfusion, including aspects of uncertainty quantification
- User-friendly, intuitive interfaces and visualisation/post-processing tools, including interfaces to the IMAS Data Dictionary (where applicable)
- Specific plans for code dissemination and user training within EUROfusion

The development of EUBOhusion standard software – either based on existing research software of from scratch – is to be primarily driven by the ASUs, but in cisca partentish with the TSV Tasks. Actually, im many cases, research software will be further developed by the ACHs (in liaison with or as viral) part of TSV Tasks) to become part of the EUROflusion standard software suite. The latter will carry significant intellectual Property.

The different TSVVs have a little bit of different character – the bulk (not all) of them focus on developing large scale (mainly monolithic?) codes targeting HPC applications.

Different strategies evolving on different timescales will likely have to be devised (and within a TSVV more than one approach could or should co-exist).

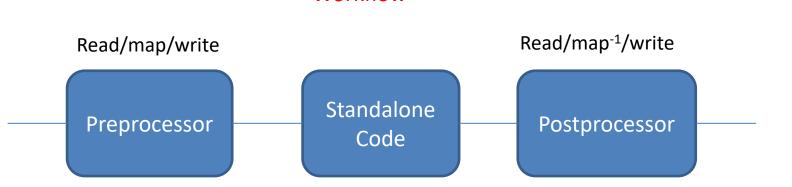
IMAS Integration levels (I am iterating some of Frederics points this is not accidental but intentional)

- None

- Post and pre-processor for IMAS data
- Integrated read/write routines
- Full framework integration
- (libraries/storage)

Use cases will vary and require different resources and (multiple?) approaches

Preconceived conception?



There is <u>no magic bullet</u> – you will need to remap, interpolate and adapt the IDS and other inputs/outputs to your code!

However once done it is largely reusable in all three cases:

IMAS Integration levels

- Pre and post processing
- Integrated read/write
- Framework integration

Workflow



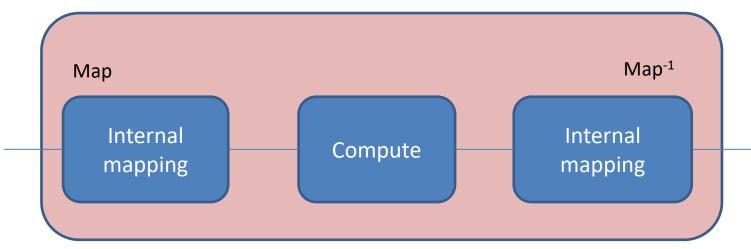
There is <u>no magic bullet</u> – you will need to remap, interpolate and adapt the IDS and other inputs/outputs to your code!

However once done it is largely reusable in all three cases:

IMAS Integration levels

- Pre and post processing
- Integrated read/write
- Framework integration

Standalone code


There is <u>no magic bullet</u> – you will need to remap, interpolate and adapt the IDS and other inputs/outputs to your code!

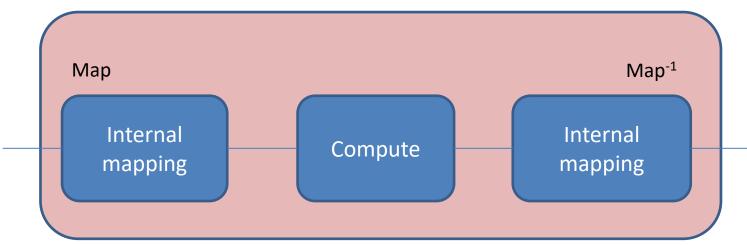
However once done it is largely reusable in all three cases:

IMAS Integration levels

- Pre and post processing
- Integrated read/write
- Framework integration

The "framework" manages all the input outputs in IDSs.

NB: "Framework" here is loosely defined: Kepler, Python framework under development, or a driver code in any of the supported languages (fortran, c/c++,...) ACH Training 2021-09-20


There is <u>no magic bullet</u> – you will need to remap, interpolate and adapt the IDS and other inputs/outputs to your code!

However once done it is largely reusable in all three cases:

IMAS Integration levels

- Pre and post processing
- Integrated read/write
- Framework integration

Key to development are the <u>standardised interfaces</u> that allows for a high level of abstraction and automation! WP CD ended up with all of the physics components available on this level.

Standardised interfaces - FC2K

Fortran example - IDS appear as derived types

subroutine name(input_IDSs, output_IDSs, code_params,

outputFlag, diagnosticInfo)

- list of input IDS
- list of output IDS
- Code params (derived type) (xsd schema, xml input)
- OutputFlag, diagnosticInfo (optional but recommended)

≦ Kepler A File								
Actor								
Project	TCIACTORS							
Name	TCINCLASS							
indine i								
Version								
Subroutine	tcinclass							
Subroutine								
Actor genera	ation:							
		tor		V Gon	orato Dyth	on actor		
Actor genera		tor		🖌 Gen	ierate Pyth	on actor		
			ameters	☑ Gen Source	erate Pyth Settings	on actor Documentati	on	Interface
⊯ Generat	e Kepler ac		ameters				on	Interface
Generat	e Kepler ac		ameters	Source	Settings	Documentati	on (Interface
Generat Arguments Arguments	e Kepler ac	ent Par	Array Size	Source	Settings	Documentati	on	Interface
✓ Generate Arguments Arguments Type eauiii ▼ core_profil	e Kepler ac Environm Slice	ent Par	Array Size	Source	Settings Outp	Documentati ut Label null null		Interface
Generation	e Kepler ac Environm Slice	ent Par	Array Size	Source	Settings	Documentation		Interface

Example from TCI (transport code interfaces) used in ETS: Inputs, outputs, [optional]

Subroutine TCINCLASS (equilibrium, core_profiles, core_transport, core_sources, code_params, [flag], [message])

FC2K is an "actor" generator for Kepler and python based frameworks. ITER is working on a replacement with updated interfaces: iWrap cf Wednesday ACH Training 2021-09-20

Interface test program Fortran

Program RunNclass ! --- Read in data --call IMAS_open_ENV(treename, shot, run, idx, USER, device, version) ! Access IDS schemas and routine if (idx < 0) then use IDS schemas write(6,"(a)") "ERROR: unable to open database." use IDS routines stop ! get access to XML read tools endif use xml file reader call IDS_get_slice(idx, "Core_profiles", coreprof, time, interpol) implicit none call IDS_get_slice(idx, "Equilibrium", eq, time, interpol) call IMAS_close(idx) ! --- Inputs --type(ids equilibrium) ! equilibrium ids :: eq ! --- Read in code parameters to code_param derived type --! core profiles ids type(ids core profiles) :: coreprof call fill_param(code_parameters%parameters_value, & type(ids parameters input) :: code parameters ! xml data and code_parameters%schema, & ! Xsd schema code parameters%parameters default, & xmllnput, xmlSchema, XMLInput) ! --- Output ---|----type(ids core transport) :: coretransp ! core transport ! Run the model type(ids core sources) :: coresource ! core sources call tciNCLASS(eq, coreprof, coretransp, coresource, code_parameters, & output_flag, output_message) integer :: output flag character(len=:), pointer :: output_message _____ ! --- Store the output with a copy of the input data ---! --- Local data -call IMAS_create_env(treename, shot, runout, refshot, refrun, idx, & integer :: idx ! IMAS data handle USER, device, version) ! --- Data shot definitions --call IDS_put(idx, "Core_profiles", coreprof) character(len=5) :: treename='ids', version="'3', device='iter' call IDS_put(idx, "Equilibrium", eq) character(len=8) :: user='g2past' call IDS_put(idx, "Core_transport", coretransp) integer :: shot=5, run=2, runout=999, interpol=1 call IDS_put(idx, "Core_sources", coresource) call IMAS_close(idx) integer :: refrun=0, refshot=0 ! backwards compatibility ignore real(kind(1.0d0)) :: time=200.0D0 ! --- clean up data storage --call ids_deallocate(coreprof) ! --- Code parameters -- input files and definitions --call ids deallocate(eq) character(len=512) :: xmllnput='input.xml', (call ids_deallocate(coretransp) xmlSchema='schema.xsd' call ids_deallocate(coresource)

end program

Main usage is within framework structures though

Interface test program Fortran

Program RunNclass ! --- Read in data --call IMAS_open_ENV(treename, shot, run, idx, USER, device, version) ! Access IDS schemas and routine if (idx < 0) then use IDS schemas write(6,"(a)") "ERROR: unable to open database." use IDS routines stop ! get access to XML read tools endif use xml file reader call IDS_get_slice(idx, "Core_profiles", coreprof, time, interpol) implicit none call IDS_get_slice(idx, "Equilibrium", eq, time, interpol) call IMAS_close(idx) ! --- Inputs --type(ids equilibrium) ! equilibrium ids :: eq ! --- Read in code parameters to code_param derived type --! core profiles ids type(ids core profiles) :: coreprof call fill_param(code_parameters%parameters_value, & type(ids parameters input) :: code parameters ! xml data and code_parameters%schema, & ! Xsd schema code parameters%parameters default, & xmllnput, xmlSchema, XMLInput) ! --- Output ---1----type(ids core transport) :: coretransp ! core transport ! Run the model type(ids core sources) :: coresource ! core sources call tciNCLASS(eq, coreprof, coretransp, coresource, code_parameters, & output_flag, output_message) integer :: output flag character(len=:), pointer :: output_message _____ ! --- Store the output with a copy of the input data ---! --- Local data -call IMAS_create_env(treename, shot, runout, refshot, refrun, idx, & integer :: idx ! IMAS data handle USER, device, version) ! --- Data shot definitions --call IDS_put(idx, "Core_profiles", coreprof) character(len=5) :: treename='ids', version="'3', device='iter' call IDS_put(idx, "Equilibrium", eq) character(len=8) :: user='g2past' call IDS_put(idx, "Core_transport", coretransp) integer :: shot=5, run=2, runout=999, interpol=1 call IDS_put(idx, "Core_sources", coresource) call IMAS_close(idx) integer :: refrun=0, refshot=0 ! backwards compatibility ignore real(kind(1.0d0)) :: time=200.0D0 ! --- clean up data storage ---Not filing some call ids_deallocate(coreprof) ! --- Code parameters -- input files and definitions --call ids deallocate(eq) character(len=512) :: xmllnput='input.xml', (mandatory info here call ids_deallocate(coretransp) xmlSchema='schema.xsd' call ids_deallocate(coresource) for brevity "code...",

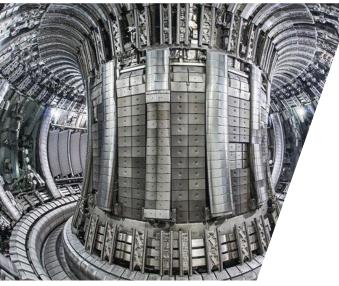
end program

Main usage is within framework structures though

ACH Training 2021-09-20

data source...

IMAS "gotchas"



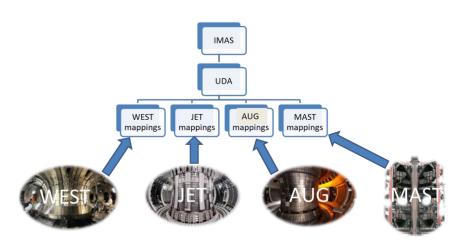
Some general observations and advice:

- Be COCOS aware!
 - Know your coordinate conventions and how they relate to the IMAS definition (Immutable to cocos=11 in IMAS, likely different for your code)
- Be Change aware!
 - IMAS is evolving and non-backwards compatible changes may occur: there are discussion on moving from IMAS DD v3 to IMAS DD v4, change of integration support software (actor generation,...)
- Know your input sources!
 - Validate your inputs IMAS IDS are not required to be complete nor internally consistent or even coherent for a single input set
- Select your integration approach or framework based on the granularity of your application(s)
- Managing your code specific parameters is likely more challenging than you would expect...
- In complex workflows data "ownership" may be an issue: if different physics codes updates the same IDS - who has preference and/or how do you merge conflicting data?

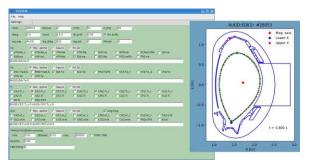
Understand your use case and in particular if it breaks new ground in terms of IMAS data dictionary, use and or storage you may need to check and validate your chosen approach.

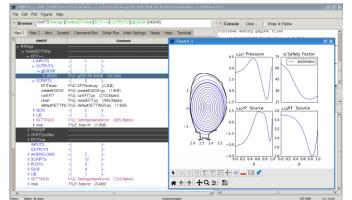
I will show some example of use from WPCD together with a brief comment on data availability

Demonstrate different aspects of integration as discussed before


- Different integration levels
- GUI elements
- Largely shown in Kepler framework
 - MHD equilibrium and reconstruction workflows
 - Edge turbulence WF + synthtetic diagnostics
 - ETS
 - AMNS

experiments




Two approaches:

- UDA (In principle available but yet to be fully established as a general tool, Open data access etc will likely be built on this)
- Bespoke toolset used to map data from experiments.
 - Exp2itm, Trview (for AUG data), readAUG, IMASgo! (Omfit plugin), TCV2IDS,...

ITER could be an incubator for the IMAS/UDA paradigm. In general, little interest from experiments otherwise to engage.

ACH Training 2021-09-20

Data available in IMAS form

IDS Name	JET	тсv	AUG	MAST	WEST
iron_core					
magnetics					
mse					
pf_active					
tf					
thomson_scattering					
wall					
core_profiles					
equilibrium					
nbi					
ic_antennnas					
ec_antennnas					
core_sources					

Colour	Mesning
	Data not relevant for this machine
	Data is missing
	Data mapping in development
	Data available
	Data validated as input of EWE-2 and EWE-3 workflows

- Initial experimental input datasets provided for "all" EUROfusion machines
- Iterative process with workflow owners to test / extend the datasets as required
- Alternates to UDA to process native data and map them in IMAS/IDS have been developed to target specific workflows:
 - TRVIEW
 - IMASgo
 - TCV2IDS
 - ReadAUG

These aspects of the is not continued from WPCD and are largely not covered within ACHs.

Edge turbulence WF

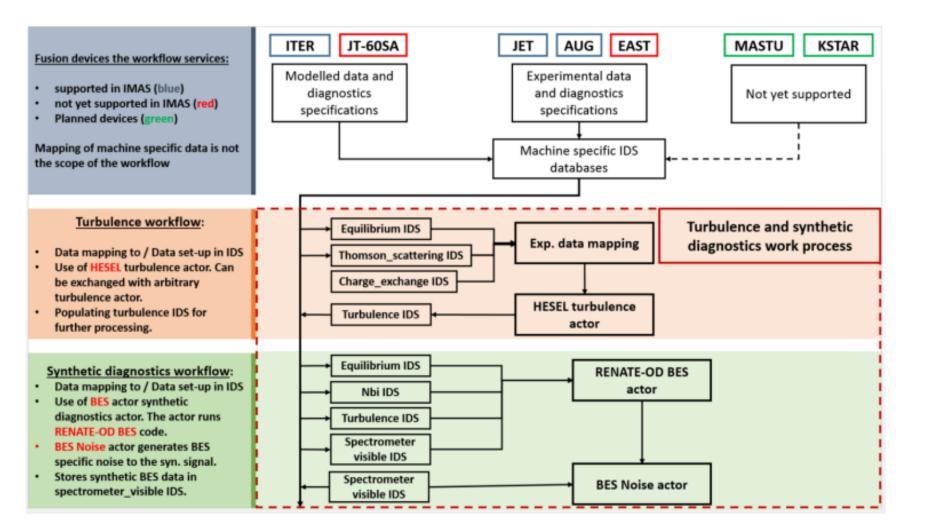
Welcome to the HESEL EDGE TURBULENCE WORKFLOW v1.0

Features :

- Reads AUG shotfile database (equilibrium, edge_profiles)
- Maps the experimental fit data to (R,Z) line of sight of thomson_scattering and charge_exchange
- Evaluates SOL turbulence with HESEL code

Running the workflow :

- Set imasdb parameters in the START actor
- Set I.o.s. for virtual thomson_scattering and charge_exchange in MAP_EXP_DATA actor
- Merged equilibrium+edge_profiles+thomson_scattering+charge_exchange+turbulence are collected.


CREDITS Workflow + data management scripts : Rui Coelho HESEL actor : Anders Nielsen

DDF Director START MAP_EXP_DATA WRAP UP UP HASMA_OUT PLASMA_in PLASMA_out plasma_in for the plasma_i

Figure 1 The turbulence workflows, HESEL_edge_workflow, with the included Python mapper and turbulence actor, HESEL

ACH Training 2021-09-20

Edge turbulence WF with synthetic diagnostics

Turbulence WPCD workflows including synthetic diagnostics to compare modelled data of SOL filamentary transport to experimental data in collaboration with WPMST1 and WPJET1. The two workflows are used independently or in sequence reading data from databases.

MHD equilibrium and Stability

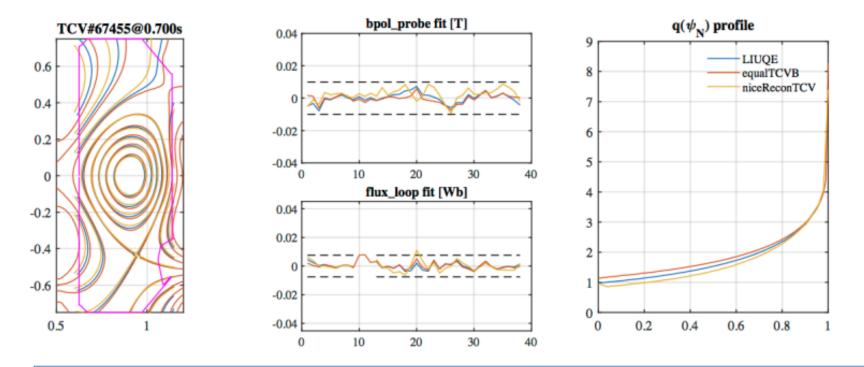
STOP THE RUN

Reconstruction workflow Equilibrium Reconstruction Workflow IMAS with or without kinetic Version: 6.2.0 RECONSTRUCTION Select the time of interest ("time_begin", "time_end" and "time_dt" variables). constraints (default codes Reconstruct equilibrium using EQUAL, NICE (EFIT++ or CLISTE in the forge) codes. DDF Director REFINEMENT - Cut-off the reconstructed equilibrium for fixed boundary high resolution calculation EQUAL, NICE). Calculate high res. equilibrium with codes : HELENA, CHEASE and CAXE. SAVE SLICE Cyclic workflow requiring ADVANCE Reconstruct (simple) control structure. TIME Loops over time Check TIME START CHECK DATA

<u>Stability workflow</u> as a single timepoint DAG for potential inclusion in ETS or reconstructions WF.

Alternate chains:

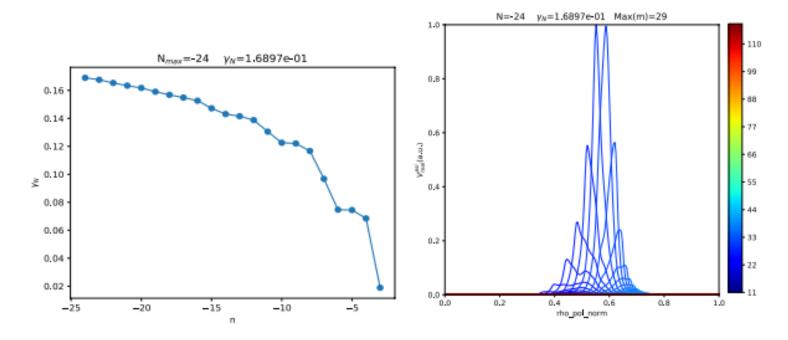
- Helena/Chease w ILSA/MARS
- Caxe w Kinx



ACH Training 2021-09-20

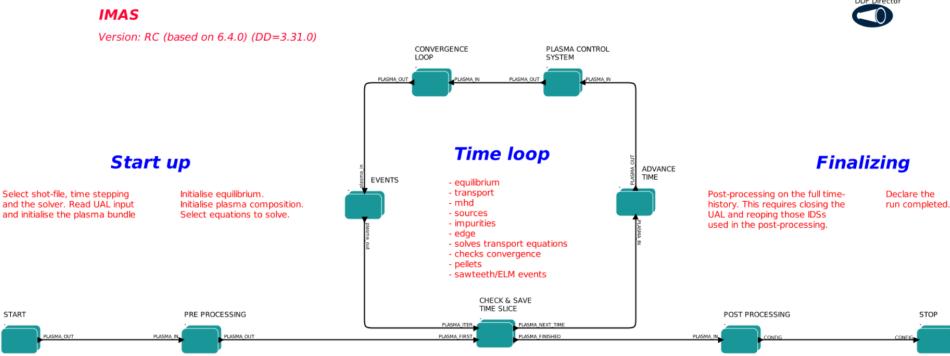
equilibrium reconstruction

A negative triangularity case with separatrix, TCV



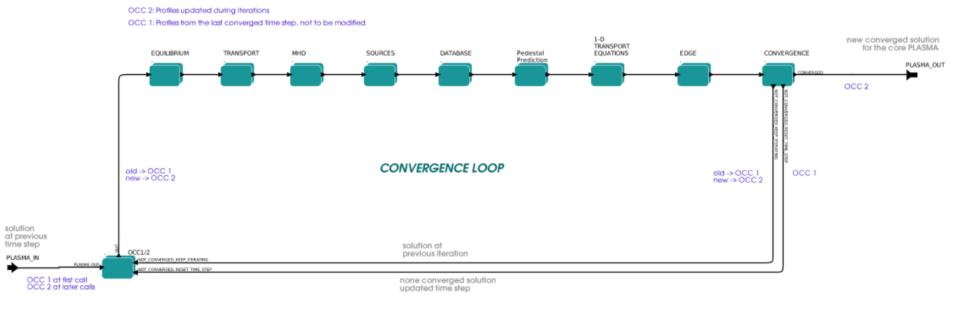
Good agreement is found between the several codes (LIUQE – the in-house tool at TCV, EQUAL and NICE). Comparison of flux contours, magnetic probe and flux loop reconstruction errors and obtained |q| profiles for the codes LIUQE, EQUAL and NICE using data from TCV discharge 67455 at t = 0.7s. Black dashed lines indicate the absolute error for the different signals

stability workflow


Application to JT-60SA, Scenario 4 with data mapped from eqdsk file, (hybrid scenario with internal transport barrier in ion energy channel). The scenario is characterised by internal infernal like modes where the ITB is located (as found in analysis).

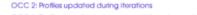
Normalised growth rate scaling with toroidal mode number (left) and radial velocity component of the most unstable mode (right) are shown for the CDBM equilibrium with fast ion pressure included.

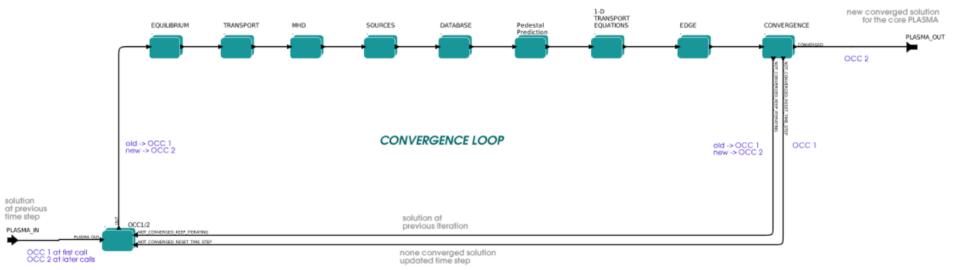
European Transport Simulator



Complex workflow with more than 40 physics modules (some alternative physics Implementations) + significant number of support and mapper functions.

Integrated framework: Java intepreter runs MoML (xml) based wf description actors In fortran, c, and python


ETS interfaces - GUI



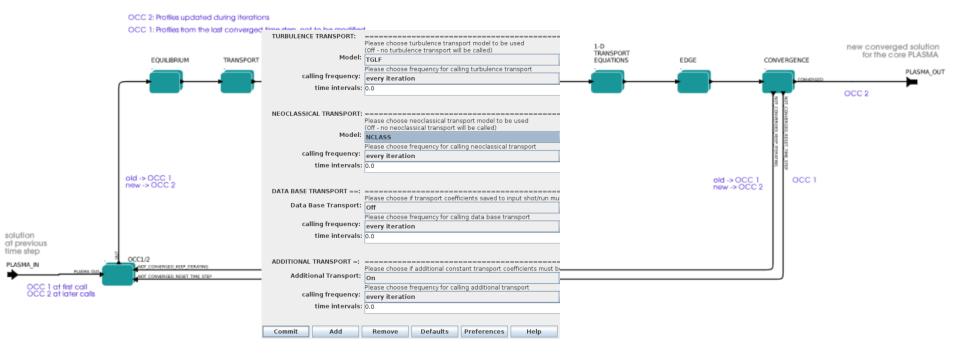
Two interfaces available: Kepler Canvas interface (above) which provides an excellent overview of software relations including configurations (and has a Powerful shortcut system for expert users). Input/settings as part of WF.

OCC 1: Profiles from the last converged time step, not to be modified

Equlibrium	
Static	
Interpretative	
Chease	
Helena	
GKMHD	

Transport	
Database	MMM
Analytical	RITM
GLF23	
Weiland	CDBM
EDWM	BgB
TGLF	Neowes
QLK	Neos
NCLASS	
NEO	

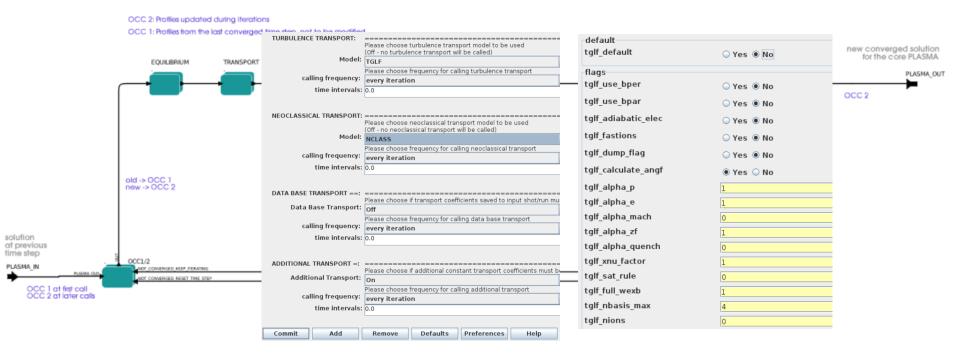
Sources	
Database	Cyrano
Analytical	Lion
BBNBI	Nbisim2
Nemo	Risk
AFSI	Spot
Fusion_sources	Ascot4
GRAY	StixRedist
GENRAY	FoPla
Torayfom	Pion
Torbeam	lccoup
runaway indicator	Impurities
Runaway fluid	Neutrals


Pedestal	Solvers	Edge
PENN	FEM	CEC
<u> </u>	Progronka	Solpsz1

In short: state of the art set of physics modules in a robust and highly configurable framework

A few models remains to be ported From ETSv5.

ETS interfaces - GUI

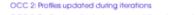


Two interfaces available: Kepler Canvas interface (above) which provides an excellent overview of software relations including configurations (and has a Powerful shortcut system for expert users). Input/settings as part of WF.

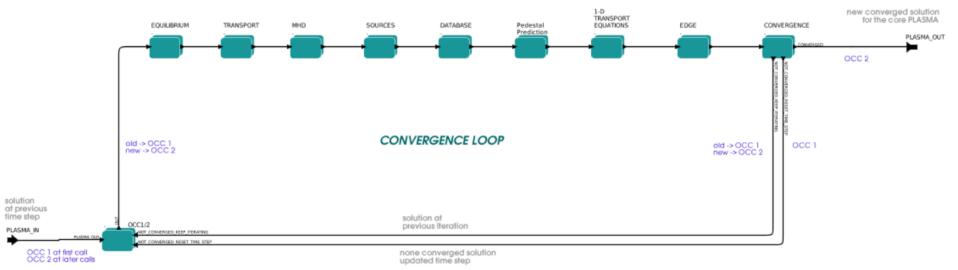
ETS interfaces – code parameters

Two interfaces available: Kepler Canvas interface (above) which provides an excellent overview of software relations including configurations (and has a Powerful shortcut system for expert users). Code parameters explicitly available

ETS interfaces - autoGui



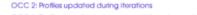
The autoGui is automagically built form the loaded workflow and provides a flatter view of ETS and its settings and in addition has added features of launching and monitoring jobs on the (gateway) cluster.


ulation Parameters Kepler Executio	n Monitoring			tglf_default	🔾 Yes 🖲 No
				flags	
ialisation Convergence Loop Pos	st_processing			tglf_use_bper	🔾 Yes 🖲 No
eneral Transport Equilibrium	Sources Transport Solver Edge			tglf_use_bpar	⊖Yes ◉No
pitzerModel	off	-		tglf_adiabatic_elec	🔾 Yes 🖲 No
pitzerFrequency	every time step	•		tglf_fastions	🔾 Yes 🖲 No
bitzerTimeIntervals	0.0			tglf_dump_flag	🔾 Yes 🖲 No
rbulenceModel	TGLF	<u> </u>	Code Parameters		
irbulenceFrequency	every iteration	<u> </u>		tglf_calculate_angf	🖲 Yes 🔾 No
irbulenceTimeIntervals	0.0			tglf_alpha_p	1
eoclassicalModel	NCLASS	<u> </u>	Code Parameters	tglf_alpha_e	1
eoclassicalFrequency	every iteration	<u> </u>		tglf alpha mach	-
eoclassicalTimeIntervals	0.0				0
atabaseModel	Off	<u>•</u>	Code Parameters	tglf_alpha_zf	1
atabaseFrequency	every iteration	•		tglf_alpha_quench	0
atabaseTimeIntervals	0.0			tglf_xnu_factor	1
dditionalModel	On	•	Code Parameters		-
dditionalFrequency	every iteration	•		tglf_sat_rule	0
dditionalTimeIntervals	0.0			tglf_full_wexb	1
elect_transport_combiner	TRANSPORT COMBINER	•	Code Parameters	tglf_nbasis_max	4
				tglf_nions	0

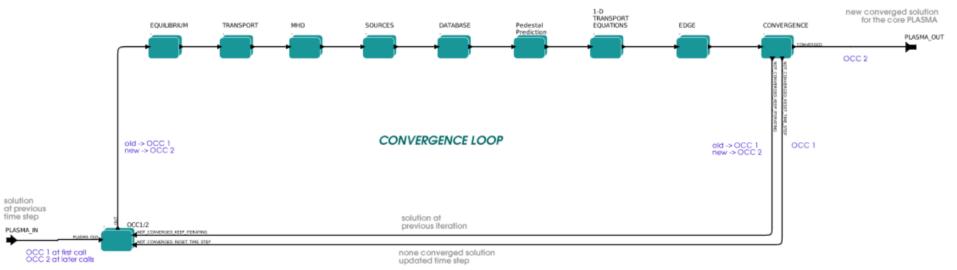
The autoGui also allows parameter files be saved, shared and distributed between users - outside of training and developments work the autoGui is the recommended Frontend tool.

OCC 1: Profiles from the last converged time step, not to be modified

Equlibrium	
Static	
Interpretative	
Chease	
Helena	
GKMHD	

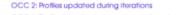

Transport	
Database	MMM
Analytical	RITM
GLF23	
Weiland	CDBM
EDWM	BgB
TGLF	Neowes
QLK	Neos
NCLASS	
NEO	

Sources	
Database	Cyrano
Analytical	Lion
BBNBI	Nbisim2
Nemo	Risk
AFSI	Spot
Fusion_sources	Ascot4
GRAY	StixRedist
GENRAY	FoPla
Torayfom	Pion
Torbeam	lccoup
runaway indicator	Impurities
Runaway fluid	Neutrals

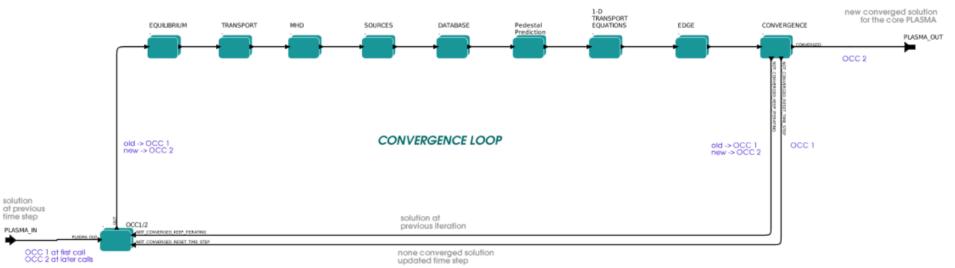

Pedestal	Solvers	Edge
PENN	FEM	CEC
·	Progronka	Solpsz1

The range of modules available gives a user some flexbility to either "Zoom" to a specific physics aspect and/or vary fidelity from "scoping" to "advanced" through the selection of modules.

OCC 1: Profiles from the last converged time step, not to be modified


Equlibrium	
Static	
Interpretative	
Chease	
Helena	
GKMHD	

Transport	
Database	MMM
Analytical	RITM
GLF23	
Weiland	CDBM
EDWM	BgB
TGLF	Neowes
QLK	Neos
NCLASS	
NEO	


Sources	
Database	Cyrano
Analytical	Lion
BBNBI	Nbisim2
Nemo	Risk
AFSI	Spot
Fusion_sources	Ascot4
GRAY	StixRedist
GENRAY	FoPla
Torayfom	Pion
Torbeam	lccoup
runaway indicator	Impurities
Runaway fluid	Neutrals

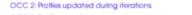
Pedestal	Solvers	Edge
PENN	FEM	CEC
	Progronka	Solpsz1

Some lingering general issues in relation to IMAS implementation: Where to store ML network data (files not allowed...) (Affects QLKNN; PENN)

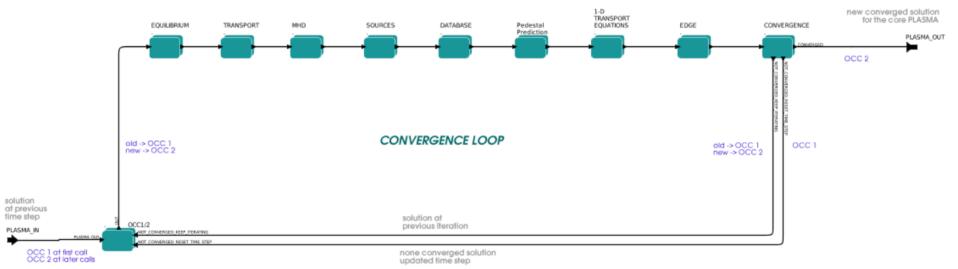
OCC 1: Profiles from the last converged time step, not to be modified

Equlibrium
Static
Interpretative
Chease
Helena
GKMHD

Transport	
Database	MMM
Analytical	RITM
GLF23	
Weiland	CDBM
EDWM	BgB
TGLF	Neowes
QLK	Neos
NCLASS	
NEO	


Database	Cyrano
Analytical	Lion
BBNBI	Nbisim2
Nemo	Risk
AFSI	Spot
Fusion_sources	Ascot4
GRAY	StixRedist
GENRAY	FoPla
Torayfom	Pion
Torbeam	Iccoup
runaway indicator	Impurities
Runaway fluid	Neutrals

Pedestal	Solvers	Edge
PENN	FEM	CEC
	Progronka	Solpsz1


Fast lon physics is included in the equilibrium and the sources, restricted to dilution only in transport modules - largely by code owners recommendations.

Transport and H&CD well presented before will only discuss other and new aspects today.

OCC 1: Profiles from the last converged time step, not to be modified

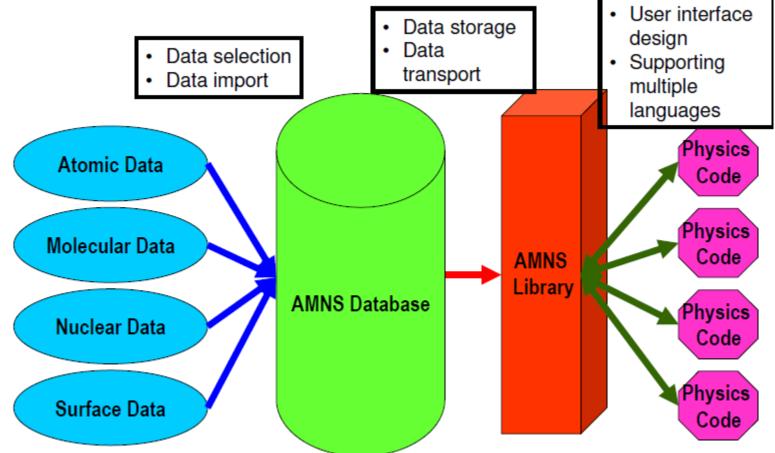
Equlibrium
Static
Interpretative
Chease
Helena
GKMHD

Transport	
Database	MMM
Analytical	RITM
GLF23	
Weiland	CDBM
EDWM	BgB
TGLF	Neowes
QLK	Neos
NCLASS	
NEO	

Database	Cyrano
Analytical	Lion
3BNBI	Nbisim2
Nemo	Risk
AFSI	Spot
usion_sources	Ascot4
GRAY	StixRedist
GENRAY	FoPla
Torayfom	Pion
Torbeam	Iccoup
unaway indicator	Impurities
Runaway fluid	Neutrals

Pedestal	Solvers	Edge
PENN	FEM	CEC
	Progronka	Solpsz1

ETS be used for both

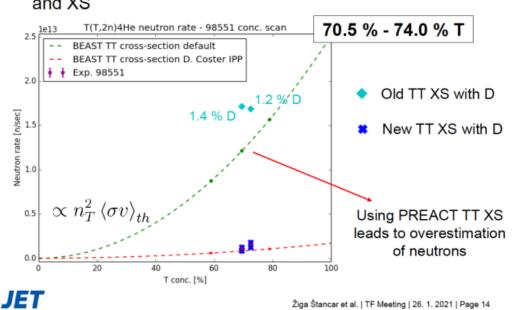

- Interpretative and
- Predictive simulations!

Set up for JET; AUG, TCV; DEMO; MAST; ITER; WEST; JT-60SA as well as K-star and DIII-D

AMNS schematics

AMNS data (up to 6D) is stored in IMAS db and serve user requests through library calls. Used throughout several applications needing AMN(s) data. It is not clear what the plans are for the future maintenance of the AMNS library and the curation of future AMNS data. Template for network data for ML applications?

ACH Training 2021-09-20


AMNS data and interfaces in IMAS

Calculation of new T-T crosssection data tested at JET:

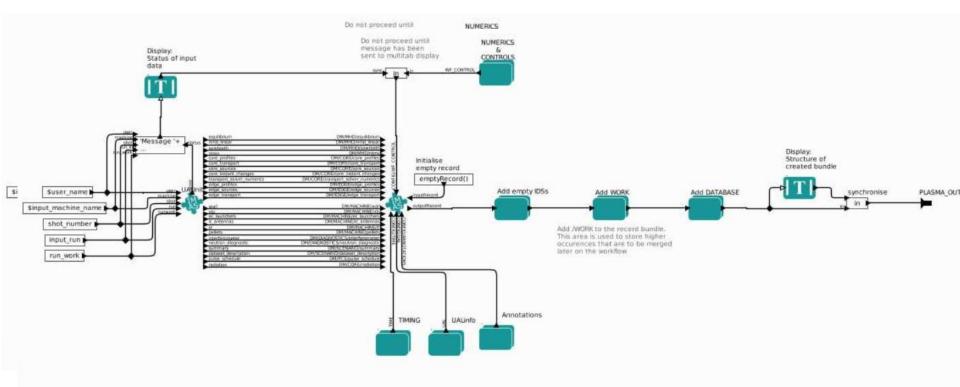
In previous work done as part of WPCD and JET activities, the existing nuclear data for T-T reactions was examined. Since the available data disagreed, a new parameterisation was prepared based on ENDF data.

BEAST T plasma results

 98551 - Checking dependency of fusion rate on T density and XS

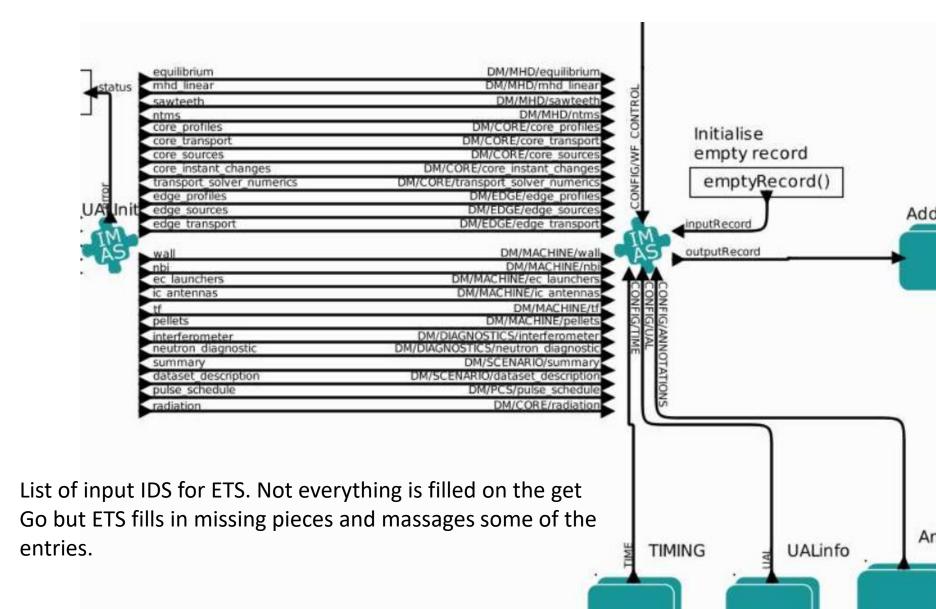
New results from JET suggest that this data is in better agreement with the experimental measurements than the previous data used in TRANSP.

Almost at the end...



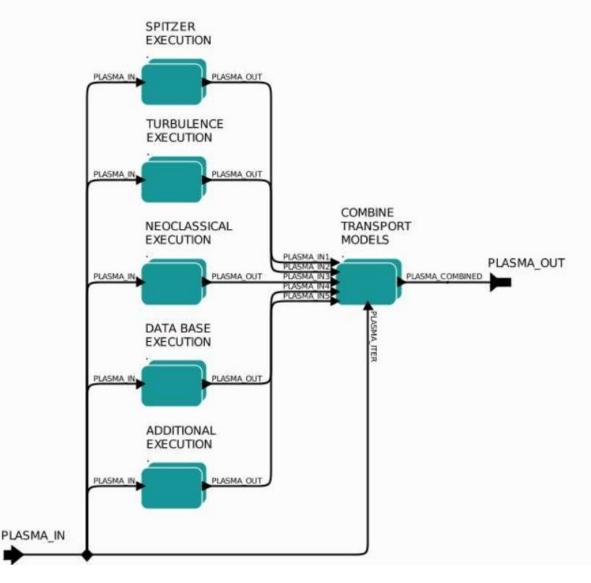
Want to discuss?

Par.strand@chalmers.se


Plasma bundle – creation in ETS

Plasma bundle is a record of the active IDS. It is not carrying the data but references to the relevant data entries. Data is imported (from memory cache or from Database) at the point of the launch of the actor.

Plasma bundle - input IDS



Occurrences

Each of the different transport channels provides a plasma bundle with references to different transport IDS output with data in model(1)

The different occurrences are merged in transport combiner to a single version which has an array of models

Now really at the end....

Want to discuss?

Par.strand@chalmers.se