Cea

DE LA RECHERCHE A 'INDUSTRIE

High Level Interfaces & their Application Programming Interface
L. Fleury

20/09/2021

Commissariat a I’énergie atomique et aux énergies alternatives - www.cea.fr

a High Level Interfaces & API

 The IMAS Data Access Layer exposes a couple of operations (so-called API) for
writing/reading IDSs data

* These data access operations are available from users code in the currently
supported programming languages, the so-called High Level Interfaces (HLI):

— Fortran

: Fortran

High Level Interface
— C++ ’ (gfortranfintel) e m
— Java Low level Abstract C/C++ framework

- Python3 Backend
B Matlab BACKEND

MDS+
Library

HDF5
Library

I/O
routines

110
routines

Commissariat a I’énergie atomique et aux énergies alternatives

a API content & organization

 The HLI API can be divided into 2 sets of operations:
— operations which apply on a Data Entry
— operations which apply on an IDS

A Data Entry is an IMAS concept for designating a collection of IDSs present in a

local (pulse file) or a remote data source. A Data Entry is associated to a shot and
a run number.

 The HLI API covers all available Access Layer features with the following exposed

methods:

Operations on a Data Entry: Operations on an IDS:
CREATE (creates a new Data Entry) PUT (writes data from an IDS to a Data Entry)
OPEN (opens an existing Data Entry) GET (reads data of an IDS from an existing Data Entry)
CLOSE (closes a Data Entry) PUT_SLICE (writes a IDS time slice to a Data Entry)

GET_SLICE (reads a time slice of an IDS from an existing Data Entry)
DELETE (deletes an IDS from an existing Data Entry)

Commissariat a I’énergie atomique et aux énergies alternatives

a About the online tutorial

* Inthe online tutorial, each HLI APl method is described using short code examples

* Code examples are using the Python HLI

* Provided Python3 programs can be executed interactively in a Python3 session or
executed in a .py file

* API functions name and their signature may differ from one HLI to another

— Documentation of all others HLIs is available in the User guide available from this
page: https://confluence.iter.org/display/IMP/Integrated+Modelling+Home+Page

Commissariat a I’énergie atomique et aux énergies alternatives

https://confluence.iter.org/display/IMP/Integrated+Modelling+Home+Page

a Creating a new Data Entry: create/close operations (1/2)

 The creation of a new Data Entry using the MDS+ or the HDF5 backend:
» Consists in creating a new (MDS+/HDF5) pulse file on the disk
» Requires to have at least an existing 'database' for hosting pulse file(s)

1. Let's first create a new database named 'data_access_tutorial' which
will belong to the current user.
From a new shell, execute the following commands:

>module load IMAS
>imasdb data_access tutorial

The database is associated with a directory, let’s check the latter has been successfully created by ‘imasdb’:

<g2lfleur@s52 ~>1s -alh ~/public/imasdb/data_access_tutorial
total 6.0K

drwxr-xr-x 3 g2lfleur g2itmdev 2.0K Sep 16 13:29 .
drwxr-xr-x 5 g2lfleur g2itmdev 2.0K Sep 16 13:29 ..
drwxr-xr-x 12 g2lfleur g2itmdev 2.0K Sep 16 13:29 3

Commissariat a I’énergie atomique et aux énergies alternatives

Creating a new Data Entry: create/close operations (2/2)

2. Calling create() on an new Data Entry:
1. import imas In this example, the MDS+ pulse file is created then closed.
from imas import imasdef However no data have been yet saved to the pulse file.

2. #creating the Data Entry object 'data_entry' which handles the pulse file with
shot=15000, run=1, belonging to database ‘data_access_tutorial' of the current user,
using the MDS+ backend
data_entry = imas.DBEntry(imasdef.MDSPLUS_BACKEND, 'data_access_tutorial’, 15000, 1)

3. #creating the pulse file handled by the Data Entry previously created
data_entry.create()

#now, we could perform some write operations using the put() operation
#... This will be dealt with later

4. #closing the Data Entry :gél;‘l;e;':/l@SSZ >|s -alh ~/public/imasdb/data_access_tutorial/3/0/
data_entry.close() drwxr-xr-x 2 g2lfleur g2itmdev 2.0K Sep 16 15:28 .

drwxr-xr-x 12 g2lfleur g2itmdev 2.0K Sep 16 13:29 ..

-rw-r--r--1 g2lfleur g2itmdev 42M Sep 16 15:28 ids_150000001.characteristics

-rw-r--r--1 g2lfleur g2itmdevO Sep 16 15:28 ids_150000001.datafile

-rw-r--r--1 g2lfleur g2itmdev 36M Sep 16 15:28 ids_150000001.tree

Commissariat a I’énergie atomique et aux énergies alternatives

Opening an existing Data Entry: open/close operations

The following code opens the existing MDS+ pulse file created previously for
shot=15000, run=1, from the 'data_access_tutorial' database of the current user:

1. import imas
from imas import imasdef

2. #creating the Data Entry object 'data_entry' which handles the pulse file with shot=15000,
run=1, belonging to database ‘data_access_tutorial' of the current user, using the MDS+ backend
data_entry = imas.DBEntry(imasdef.MDSPLUS_BACKEND, ‘'data_access_tutorial’, 15000, 1)

3. #opening the pulse file handled by the Data Entry previously created
data_entry.open()

#now, we could perform some read/write operations using the get/put() operations
#... This will be dealt with later

4. #closing the Data Entry
data_entry.close()

Commissariat a I’énergie atomique et aux énergies alternatives

Reading a magnetics IDS from WEST using get() (1/2)

}Rfm

Each IDS exposes the get() operation which reads all IDS data from an opened Data Entry.
When calling the get() operation on a IDS, all scalars and data arrays contained in the IDS are read.
All these data are put in memory.

ITER Ph

rsics Data Model Documentation for magnetics

Commissariat a I’énergie atomique et aux énergies alternatives

Full path name Description Data Type Coordinates
» ids_properties Interface Data Structure properties. This element identifies the node above as an IDS structure
B struct_array [max_size=200 (limited in MDS+ 2
v flux_loop(il) Flux loops: partial flux loops can be described bt ool 1-1.N
name Name of the flux loop {static} STR_0D
identifier 1D of the flux loop {static} STR_0D
Flux loop type. Available options (refer to the children of this identifier structure) -
Name Index || Description
toroidal i Toroidal flux loop
saddle 2 Saddle loop
> type diamagnetic_internal 3 Diamagnetic internal loop structure
diamagnetic_external 4 Diamagnetic external loop
diamagnetic_compensation 5 Diamagnetic compensation loop
diamagnetic_differential 6 Diamagnetic differential loop
» position(i2) List of (R.Z.phi) points defining the position of the loop (see data structure documentation FLUXLOOPposition.pdf) {static} ;::;‘e;:";ﬁ\[_;?“—s“:‘o Qi MDSE 1-1.N
indices_differential(:) Indices (from the flux_loop array of structure) of the two flux loops used to build the flux difference flux(second index) - flux(first index). Use INT 1D =19
S : only if ./type/index = 6, leave empty otherwise {static} Al
area Effective area (ratio between flux and average magnetic field over the loop) {static} [m’2] FLT_0D
Integral of 1/R over the loop area (ratio between flux and magnetic rigidity R0.B0). Use only if ../type/index =3 to 6, leave empty otherwise.
emd FLT_OD
{static} [m]
Measured magnetic flux over loop in which Z component of normal to loop is directed downwards (negative grad Z direction) [Wb]. This quantity
is COCOS-dependent, with the i :
v flux structure
, T
data() Data {dynamic} [as_parent] FLT_ID fhux_loop(ily flux/time
Indicator of the validity of the data for each time slice. 0: valid from automated processing, 1: valid and certified by the diagnostic RO; - 1 means 1
validity_timed()) problem id i in the data (request v by the d RO), -2: invalid data, should not be used (values lower than -2 INT_ID hex_loop(ilyfluxftime
have a code-specific meaning detailing the origin of their invalidity) {dynamic} oop
Tndicator of the validity of the data for the whole acquisition period. 0: valid from automated processing, 1: valid and certified by the diagnostic
validity RO: - 1 means problem identified in the data g (request v by the d RO), -2: invalid data, should not be used (values INT_0D
lower than -2 have a code-specific meaning detailing the origin of their invalidity) {constant}
time(:) Time {dynamic} [s] FLT_ID 1-1.N

Reading a magnetics IDS from WEST using get() (2/2)

The code below reads an existing 'magnetics' IDS from a WEST pulse file:

1. #opening the existing Data Entry from WEST
data_entry = imas.DBEntry(imasdef.MDSPLUS_BACKEND, ‘west’, 54178, O, ‘g2lfleur’)
(see code in a previous slide for completing this step)

2. #reading the 'magnetics' IDS from the Data Entry previously opened
magnetics_ids = data_entry.get('magnetics’', 0) #argument © is the so-called IDS occurrence

3. #closing the Data Entry
data_entry.close()

#printing some IDS attributes
print('Number of flux loops = ', len(magnetics ids.flux loop))
print(‘First flux loop = ', magnetics_ids.flux loop[@].flux.data)

print(‘Time basis = ', magnetics ids.time)

Output:
Number of flux loops = 17

Time basis = [1.83570397 1.86847198 1.90123999 ... 90.13289642 90.16566467 90.19843292]

First flux loop = [©.00065229 ©0.00163073 0.00489218... -0.01761185 -0.01663342 -0.01500269]

Commissariat a I’énergie atomique et aux énergies alternatives

Populating and writing a new magnetics IDS using put() IRfim

In order to write all data (scalars and data arrays) contained in an IDS to the pulse file created previously, we will
call the put() operation which writes all static (non time dependent) AND dynamic data present in the IDS.

1. #opening the existing Data Entry (shot=15000, run=1)
(see code in a previous slide)

2. #creating a new 'magnetics' IDS
magnetics_ids = imas.magnetics()

3. #populating the ‘magnetics’ IDS
magnetics_ids.ids_properties.homogeneous_time=1 #setting the homogeneous time (mandatory)
magnetics_ids.ids_properties.comment="IDS created for testing the IMAS Data Access layer’
magnetics_ids.flux_loop[@].flux.data = numpy.array([106,12,13.5,15]) #using some fancy values..
magnetics_ids.time=numpy.array([0,1,2,3]) #the time(vector) must be not empty if
homogeneous_time==1 otherwise an error will occur at runtime

4. #writing the magnetics IDS to the Data Entry
data_entry.put(magnetics_ids, ©) #argument @ is the so-called IDS occurrence

5. #closing the Data Entry An example of mixing get()/put() using 2 different
data_entry.close() Data Entries is given in the online tutorial

Commissariat a I’énergie atomique et aux énergies alternatives

Steps for building an IDS with time slices using put_slice()

An IDS containing dynamic data structures can be built progressively using time slices.

A dynamic data structure is either:
- anarray with type INT_nD or FLT_nD where n=1 to 6, which holds a time coordinate
- oraso-called dynamic array of structures AOS[itime] where itime runs along a time index

v channel(il)

name

In the online tutorial example, we illustrate the use of put_slice() on a
‘camera_visible' IDS which contains the dynamic array of structures 'frame’
(camera_visible_ids.channel[@].detector[0@].frame).

> aperture(i2)

viewing_angle_alpha_bounds(:)

viewing_angle_beta_bounds(:)

v detector(i2)

Steps for building an IDS using time slices consist in: T
. . . . pixel_to_beta(:)
1. opening an existing Data Entry (or creating a new one) Vavelengt over
. . o, . s . . . wavelength_upper
2. creating and initializing an IDS with static data —
3. setting the time slices container(s) S
4. populating & writing time slices
5. closing the Data Entry image_san(:)
Extract of the ITER Physics Data Model / S
Documentation for ‘camera_visible’ IDS time

Commissariat a I’énergie atomique et aux énergies alternatives

Building a ‘camera_visible’ IDS using put_slice()

3. #setting time slices container(s) (camera_visible_ids.channel[@].detector[@].frame[@])
camera_visible ids.channel.resize(1l) #using only 1 channel (channel @) for this example

camera_visible ids.channel[@].detector.resize(1) #using only 1 detector for channel ©

camera_visible ids.channel[@].detector[@].frame.resize(1) #it is the slice to be appended to the IDS

X = 3 #number of horizontal pixels of 2D ‘image_raw’ field

Y = 5 #number of vertical pixels of 2D ‘image_raw’ field
camera_visible_ids.channel[@].detector[@].frame[0].image raw.resize(X,Y) #setting the size of the image
camera_visible ids.time.resize(1l) #the time vector contains only 1 element, it’s the time of the slice

4. #populating & writing time slices Only time slices of the 2D image_raw field of the first detector of the

nb_slices=3 #number of time slices to be added first channel are populated in this example:
camera_visible ids.channel[@].detector[@].frame[0@].image raw

for i in range(nb_slices):
camera_visible ids.time[@] = float(i) #setting the time of the slice
for j in range(X):
for k in range(Y):
#image_raw is a 2D array containing an image of X*Y pixels
camera_visible ids.channel[@].detector[@].frame[0@].image_raw[j,k] = float(j + k + 1)
if i==0:
data_entry.put(camera_visible_ids) #the first slice i=0 has to be added using put()
else:
data_entry.put_slice(camera_visible _ids) #appending current slice to the IDS using put_slice()

Commissariat a I’énergie atomique et aux énergies alternatives

Getting a slice from previous ‘camera_visible’ IDS using get_slice()

)) - . . Image raw: Image raw: Image raw:
(running previous code example using put_slice) [[0123 4] [[12345] [[2345 6]
[1 2 3 4 5] [2 345 6] [3456 7]
[2 345 6]] [3456 7]] [4 56 7 8]]

Getting a time slice of ‘camera_visible’ IDS

1. #opening the existing Data Entry
(see code in a previous slide)

2. #getting a slice of ‘camera_visible’ IDS at the specified time using the closest interpolation
time_requested=1.
slice = data_entry.get_slice('camera_visible', time_requested, imasdef.CLOSEST_INTERP, 0)

print("Slice time: ", time_requested) Slice time : 1.0

print("Image raw:") Image raw:

print(slice.channel[@].detector[@].frame[0].image raw) [[1 2 3 4 5]

print("----- ") Result: [2 345 6]
(running this code) | [3 4 5 6 711

3. #closing the Data Entry T a—a-

data_entry.close()

Commissariat a I’énergie atomique et aux énergies alternatives

