
EUROfusion	actor	release	procedure	for
IMAS
Documentation
Documentation	is	also	available	on	PSNC’s	Confluence	page

Content	of	the	repository
actor_install.py:	script	that	automates	the	build	of	IMAS	actor(s)
TEMPLATE.yml:	template	description	of	a	released	actor
*.yml:	currently	released	projects/actors	(as	provided	by	the	community)

Pre-requisites
The	script	depends	on	a	the	yaml	python	packages	which	might	not	be	part	of	most	standard	installs.

It	expects	that	you	can	access	the	repositories	(GIT	or	SVN)	that	contain	the	targeted
actors/projects.

For	project	stored	on	Gateway	GFORGE,	svn+ssh	is	not	allowed,	so	checking	out	sources	will	work
only	if	you	have	stored	previously	username	and	password.	For	other	repository,	we	advise	that	you
use	access	through	ssh-key.	In	case	you	have	set	a	passphrase	with	for	your	private	key,	you	should
use	ssh-agent	and	make	sure	that	you	have	typed	the	passphrase	(using	ssh-add)	before	running
calling	the	actor_install.py	script.

Description	of	a	release
Start	by	taking	a	look	at	TEMPLATE.yml,	and	adapt	the	different	information	to	your	own	needs	for
the	targeted	project/actors.	
This	YAML	file	contains	five	sections	(mappings)	as	follow:
-	SOURCES	:	required	information	on	Version	Control	System	where	the	sources	of	the	project(s)	are
stored.	
-	MODULES	:	required	information	on	module	environment	needed	to	attempt	the	build	of	the	libraries
-	BUILDS	:	required	information	on	how	to	build	the	libraries
-	ACTORS	:	required	information	on	where	FC2K	project	files	are	stored
-	COMMENTS	:	optional	any	comments,	notes,	documentation	from	developers	of	the	code

Note:	all	paths	are	given	relatively	to	the	working	directory	(created	automatically	to	be	unique
inside	the	current	directory)	or	specified	with	CLI	option	-D	<working_dir_path>.

SOURCES	section

Content

A	list	(sequence)	of	mappings	with:	
-	VCS	:	required	type	of	Version	Control	System
-	REPO	:	required	URL	of	the	repository,	including	path	to	branch/tag	
-	DIR	:	required	target	directory	in	which	to	store	this	project	sources
-	VERSION	:	optional	target	version	of	the	sources

Description

This	step	will	checkout/clone	the	source	code	and	store	it	under	the	specified	sub-directory	DIR.

Associated	command	line	options

--skipSources	:	do	not	checkout/clone	sources	(makes	sense	only	with	-D	<working_dir_path>)
-R/--checkRevision	<version>	:	specifies	and	check	revision	number	or	a	commit	hash

MODULES	section

Content

A	sequence	of	modules	(e.g.	[imasenv,	fc2k/4.3.0]).

Description

After	doing	module	purge	to	ensure	reproducibility,	the	specified	list	of	modules	will	be	loaded,	while
already	loaded	modules	will	be	switched	to	specified	version.

Associated	command	line	options

-M	<premodule>	:	load	any	site	specific	module(s)	before	the	ones	listed	in	the	YAML	file	(e.g	-M
cineca	on	the	Gateway)
--skipModules	:	do	not	purge	and	load	specified	modules	but	use	currently	loaded	ones

BUILDS	section

Content

A	sequence	of	build	mappings,	with:
-	DIR	:	directory	from	which	the	build	command	should	be	executed
-	CMD	:	build	command	(script,	makefile,	etc…)

Description

The	specified	commands	CMD	will	be	executed	from	their	associated	directory	DIR	to	build	all	the
libraries	required	by	the	actors.

Associated	command	line	options

--skipBuilds	:	do	not	attempt	to	build	the	libraries	(makes	sense	only	with	-D	<working_dir_path>)

ACTORS	section

Content

A	sequence	of	FC2K	mappings,	with:
-	DIR	:	directory	from	which	fc2k	should	be	executed
-	XML	:	path	to	FC2K	project	file	for	a	given	actor

Description

FC2K	will	be	executed	from	specified	directory	DIR	on	associated	project	file	XML	in	order	to	install
the	actor.

Associated	command	line	options

--skipActors	:	do	not	attempt	to	create	the	actor	(makes	sense	only	with	-D	<working_dir_path>)
-K/--setKepler	<KEPLER>	:	sets	non-standard	KEPLER	variable,	now	mandatory	as	Kepler	module
do	no	set	$KEPLER	but	$KEPLER_SRC	(since	version	2.5p4-3.0.6),	unless	--skipModules	option	is	used

(then	make	sure	you	have	done	a	kepler_load	before	calling	this	script)

COMMENTS	section

Content

A	long	string	(starts	with	|)	that	can	span	on	several	lines	with	line	breaks	preserved	as	long	as
initial	indent	is	there.

Description

At	the	moment	this	is	only	informative	for	people	reading	the	yaml	file,	not	processed.

How-to	test	and	publish	a	release
One	the	YAML	file	is	written,	you	can	use	the	actor_install.py	script	to	install	it	in	your	Kepler.	As
explain	in	the	help	accessible	with	option	-h	/	–help,	It	takes	as	last	argument(s)	the	YAML	file(s).

If	no	error	where	discover	during	all	the	steps	(you	can	use	option	-p	/	–pedantic	to	stop	at	first
encounter	error)	you	can	commit	you	YAML	file	to	the	repository.

Building	examples	on	the	EUROfusion	Gateway
Minimal	required	environment
module	load	cineca	itm-python/3.6

Kepler

You	need	to	have	a	Kepler	at	your	disposal	to	be	the	target	for	actors	installation.
This	target	Kepler	can	be	installed	publickly	(only	if	you	have	sufficient	access	rights)	or	locally
(through	usual	commands	kepler_install,	kepler_avail,	kepler_load).

Selecting	this	target	Kepler	depends	on	either	you	skip	the	modules	section	of	the	install	procedure
(--skipModules)	or	not.

Default	mode

When	installing	an	actor	using	the	modules	specified	in	the	Yaml	file,	as	the	install	script	will	start
by	purging	the	environment	you	need	to	specify	the	exact	location	of	the	target	Kepler	through	the
command	line	-K/--setKEPLER.	If	you	are	not	sure	where	your	locally	installed	Kepler	is	stored,	simply
do:

kepler_avail
kepler_load	<name_of_my_kepler>
./actor_install.py	-M	cineca	-K	$KEPLER	<yaml	file(s)>	

Skip	modules	mode

In	this	mode	you	can	control	the	entire	environment	in	which	a	code	is	compiled	and	the	actor
installed.	Make	sure	you	have	loaded	the	wanted	target	Kepler	(kepler_load	<name_of_my_kepler>)
before	running	the	install	script	with	--skipModules	option:

kepler_avail
kepler_load	<name_of_my_kepler>
./actor_install.py	--skipModules	<yaml	file(s)>	

Example	commands

print	help:

./actor_install.py	-h

installs	chease:

./actor_install.py	-M	cineca	-K	$KEPLER	chease.yml

installs	cyrano,	verbose	mode:

./actor_install.py	-M	cineca	-K	$KEPLER	-v	cyrano.yml

installs	gkmhd,	pedantic	mode	(stops	at	first	error):

./actor_install.py	-M	cineca	-K	$KEPLER	-p	gkmhd.yml

installs	both	gray	and	neowes:

./actor_install.py	-M	cineca	-K	$KEPLER	gray.yml	neowes.yml

attempts	to	install	all	present	actors/projects	(but	TEMPLATE):

./actor_install.py	-M	cineca	-K	$KEPLER	*.yml

installs	all	actors	using	tmpdir	as	working	dir	for	checkout	and	build:

./actor_install.py	-M	cineca	-K	$KEPLER	-D	tmpdir	*.yml

Some	more	advanced	commands

build	and	install	chease	actor,	without	checking	out	sources	again	(need	to	be	present	in
tmpdir):

./actor_install.py	-M	cineca	-K	$KEPLER	-D	tmpdir	--skipSources	chease.yml

install	chease	actor,	sources	and	compiled	lib	need	to	be	present	in	tmpdir	already:

./actor_install.py	-M	cineca	-K	$KEPLER	-D	tmpdir	--skipSources	--skipBuilds	chease.yml

install	all	actors	using	locally	prepared	environment:

./actor_install.py	--skipModules	*.yml

